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SUMMARY

The present paper presents a comparison of four di�erent particle tracing schemes which were integrated
into a parallel multiblock �ow simulation program within the frame of a co-visualization approach.
One p-space and three di�erent c-space particle tracing schemes are described in detail. With respect
to application on high-performance computers, parallelization and vectorization of the particle tracing
schemes are discussed. The accuracy and the performance of the particle tracing schemes are analyzed
extensively on the basis of several test cases. The accuracy with respect to an analytically prescribed
and a numerically calculated velocity �eld is investigated, the latter in order to take the contribution of
the �ow solver’s error to the overall error of the particle traces into account. Performance measurements
on both scalar and vector computers are discussed. With respect to practical CFD applications and the
required performance especially on vector computers, a newly developed, improved c-space scheme is
shown to be comparable to or better than the investigated p-space scheme. According to accuracy the
new c-space scheme is considerably more advantageous than traditional c-space methods. Finally, an
application to a direct numerical simulation of a turbulent channel �ow is presented. Copyright ? 2002
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Particle tracing techniques are widely used for the visualization of results in computational
�uid dynamics (CFD). Optimization of particle tracing schemes for use on high-performance
computers is an important issue in co-visualization, where visualization modules are usually
part of the �ow simulation program [1; 2]. In contrast to the more common post-visualization
approach, in co-visualization the major part of the mapping step (calculation of particle traces)
is usually done on a high-performance computer, while the particle data are transferred on-
line to a graphics workstation for rendering. In addition to co-visualization, the application
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of particle tracing methods on supercomputing platforms is also important in the �eld of
multi-phase �ow simulations based on the Euler–Lagrangian approach. To yield maximum
performance of particle tracing schemes in these application cases, the algorithms have to be
adapted to high-performance computing architectures.
In the present investigation, four di�erent particle tracing schemes were integrated into a

parallel multiblock �ow simulation program within the frame of a co-visualization approach.
Since the �ow solver is mainly applied on vector and parallel-vector computers, paralleliza-
tion and vectorization of the particle tracing schemes was an important issue. Although pure
vector computers may be a dead-end, newer developments of top-level supercomputers such
as Hitachi SR8000-F1 show that vectorization is still an important issue. Cache-based sys-
tems typically su�er from a dramatical performance breakdown when the data size exceeds
the cache size. Applying so-called pseudo-vector facilities seems to be a way out of this
dilemma. Therefore, appropriate vectorization of algorithms will remain of major concern not
only for parallel-vector computers but also for SMP-clusters and is addressed here.
The �ow simulation program applied in the present work makes use of block-structured

curvilinear grids, for which two major particle tracing approaches have to be distinguished:
the equation of motion of the particles may be integrated either in computational space
(c-space) or in physical space (p-space). C-space and p-space particle tracing schemes have
been described by several researchers [3–5] and each approach has its speci�c advantages and
disadvantages. In c-space schemes the particle traces are integrated in a coordinate system,
in which the curvilinear physical space grid is orthonormal. Point location within the c-space
grid is trivial, since there is an explicit relationship between the c-space coordinates of a point
(e.g. a particle location) and the grid cell containing it. In p-space generally there is no such
explicit relation, so that some iterative method is required to localize a point within the grid.
Since vectorization of the point location is more sophisticated than in the case of a c-space
scheme, optimization of p-space schemes for use on vector computers is much more di�cult.
On the other hand, in c-space schemes there are additional sources of error compared with
p-space schemes. By comparing several p-space and c-space schemes, Sadarjoen et al. [4]
have shown that with respect to a given velocity �eld c-space schemes are usually less accu-
rate than p-space schemes. Moreover, at least on a workstation, most c-space schemes have
been found to be signi�cantly slower than schemes working in p-space.
Within the scope of the present investigation, an improved c-space scheme has been de-

veloped which is considerably more accurate and more e�cient with respect to the operation
count than traditional c-space schemes. A comparison of three di�erent c-space schemes and
one p-space scheme with the main focus on high-performance computing platforms is pre-
sented here.
The paper is organized as follows. Some background information about this work is given

in Section 2. Mathematical details of the particle tracing schemes and the applied high-
performance computing techniques such as vectorization and parallelization are described in
Section 3. The investigation of accuracy with respect to an analytically prescribed velocity
�eld is presented in Section 4.1. In Section 4.2 the contribution of the numerical error of
the �ow solver to the overall error of the particle tracing schemes is examined. This is
especially important for practical CFD applications. The performance (computational speed)
of the schemes was measured both on scalar and vector computers, as will be discussed in
Section 5. An application to an extensive direct numerical simulation of a turbulent channel
�ow is presented in Section 6.
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2. BACKGROUND

The work presented here is based on a co-visualization approach using the extracts concept of
Globus [6], which has been applied previously by Haimes [7]. Extracts are sets of physical in-
formation such as the positions of particles and the values of �ow quantities at these positions,
which are calculated by visualization modules within the �ow simulation program. Using this
approach, the data output of the �ow solver can be reduced drastically since the extracts need
less memory than the storage of the complete �ow solution. This is especially important for
the visualization of extensive direct numerical simulations (DNS) of turbulent �ows typically
producing several terabytes of solution data. With this concept DNS visualization can be per-
formed at high temporal resolution, which is hardly possible with a post-processing approach
since this would require all time steps of the �ow solution to be stored. Moreover, the data
reduction also facilitates interactive on-line visualization of concurrent �ow simulations, since
transmission of extracts over a network connection from a high-performance computer to a
graphics workstation is considerably faster than transmission of the complete �ow solution.
However, a serious drawback of this approach is that the �ow simulation has to be repeated
if previous time steps are to be re-visualized with di�erent parameters.
In this context, a particle tracing module has been integrated into the general-purpose CFD

package FASTEST-3D developed by LSTM Erlangen [8; 9]. With this program laminar as
well as turbulent steady and unsteady �ows including heat and mass transfer can be simu-
lated numerically. The three-dimensional incompressible Navier–Stokes equations expressing
the conservation of mass, momentum and energy are solved based on a fully conservative
�nite-volume discretization on non-orthogonal curvilinear grids with a colocated arrangement
of the variables. In order to resolve complex geometries, block-structured grids are used,
i.e. the blocks are globally unstructured, but each block consists of a curvilinear structured
grid. Second-order central di�erences are applied for all terms together with �ux blending
(�rst-order upwind=second-order central) and a deferred correction approach for the convec-
tive �uxes. For the temporal integration of the �ow �eld a second-order fully implicit scheme
and a second-order Crank–Nicolson scheme are available. The code is endowed with fast
and e�cient numerical algorithms such as FAS=FMG multigrid and highly optimized for
high-performance supercomputers such as vector computers and parallel-vector systems (e.g.
NEC SX-4=5 or Fujitsu VPP 700). Furthermore, it is adapted to SMP-clusters such as the
Hitachi SR8000-F1 using pseudo-vector facilities. For parallelization a grid partitioning tech-
nique combined with explicit message passing based on MPI is employed. FASTEST-3D has
been applied successfully to a long list of engineering and scienti�c �ow problems ranging
from external �ows around high-speed trains to internal �ows in stirred vessels and nearly
everything in between.

3. PARTICLE TRACING METHODS

This section gives a description of four particle tracing schemes for 3D time-dependent
�ows which were integrated into the �ow solver FASTEST-3D. An interesting aspect is
that FASTEST-3D makes use of block-structured grids and solves the governing equations
of �uid �ow in c-space based on precomputed transformation matrices between p-space and
c-space. The question arises whether these resources can be utilized in a c-space particle
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tracing scheme. The c-space scheme CG using the �ow solver’s transformation matrices is
investigated here. However, a detailed analysis will show that the �ow solver and the particle
tracing scheme need di�erent transformation matrices, resulting in signi�cant errors of the
CG scheme. The c-space scheme CZ described as ‘C-FDBD’-scheme in Reference [4], where
it was found to be the most accurate c-space scheme investigated, is used for comparison
purposes. Major improvements to the CZ scheme with respect to accuracy and performance
lead to the new c-space scheme CZ+ which will be described in detail. The state-of-the-art
p-space scheme PT will be used as reference for the accuracy and performance measurements
in Section 4 and Section 5, respectively.
Since the particle tracing schemes are part of the �ow solver, there are some speci�c

bene�ts as well as limitations which are worth noticing. On the one hand, in multiblock and
parallel applications the data structures of the �ow solver can be used for the exchange of
particles between di�erent blocks or processors. On the other hand, in parallel applications
no load balancing of particle tracing is possible due to the distributed memory parallelization
of FASTEST-3D based on domain decomposition. Furthermore, due to memory limitations
in many application cases the �ow solver holds only two consecutive time steps of the �ow
solution in memory, so that the temporal interpolation of the velocity �eld needed for particle
tracing is limited to second-order linear interpolation. For the same reason, the time step for
the integration of the particle paths cannot exceed the simulation time step of the �ow solver.
The starting point of this section is the governing equation of particle advection in a �ow

and its numerical integration, followed by a description of the p-space scheme PT and the
three c-space schemes CG, CZ, and CZ+. First the schemes are formulated for the one-
block case of a structured curvilinear grid. Multi-block grids are discussed together with the
parallelization and vectorization techniques at the end of this section.

3.1. Governing equation and numerical integration

The objective of particle tracing as a �ow visualization method is to create an intuitive
representation of the velocity �eld, not to trace real physical objects mutually interacting with
the �ow. A particle in this sense is massless and in�nitely small, always moving with the
same velocity as the �uid at the actual particle position, and never acting back on the �uid. A
particle trace resulting from this advection process is given by the solution of the following
initial value problem:

ẋ(t)=v(x; t); x(t0)=x0 (1)

where x(t) is the particle position at time t, v denotes the velocity �eld and x0 is the initial
position of the particle at t= t0.
The main di�culty with the integration of Equation (1) is that the velocity is given as

a discrete CFD solution at the vertices of a structured grid at discrete time steps. Some
interpolation scheme is needed to construct the velocity �eld at arbitrary positions (x; t) within
the computational domain, which in turn requires the knowledge of the grid cell containing
the point x at time t. Hence a point location scheme is necessary which relates the coordinates
of a given point to the grid cell containing it. Since point location is completely di�erent in
c-space and p-space schemes, the details are described later together with the speci�c schemes.
For the numerical integration of Equation (1), both non-adaptive and adaptive, explicit

and linear-implicit Runge–Kutta (RK) schemes [10; 11] have been implemented, e.g. RK2,
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RK2(1), RK3, RK3(2) and LIRK4(3), where RKp refers to a non-adaptive explicit RK
scheme of order p, RKp1(p2) is an adaptive scheme of order p1, which uses an embed-
ded RK scheme of order p2 for the error estimation, and LIRK refers to a linear-implicit RK
scheme. As an example, two di�erent RK2 schemes will be speci�ed here. In the so-called
modi�ed Euler scheme, the following explicit relations are applied to obtain a new particle
position xl+1 at time t +�t from a position xl at time t:

a= 1
2 �t

b=xl + a v(xl; t)
xl+1=xl +�t v(b; t + a)

(2)

where �t is the integration time step. Another RK2 scheme, the so-called Heun scheme, can
be obtained by substituting a=�t in the above relations. For the integration schemes it is
important that the �ow solver holds only two consecutive time steps tn−1 and tn (n=1; 2; : : :)
of the �ow solution in memory, so that the integration time step cannot exceed the simulation
time step tn − tn−1 of the �ow solver.
So far the governing equation and the numerical integration schemes have been considered

in a physical space formulation, which can be applied in a p-space particle tracing scheme. A
description of the p-space scheme PT applied in the present investigation is given in the next
section. For a c-space scheme, the initial value problem Equation (1) has to be transformed
to the c-space coordinate system, as will be described in Section 3.3.

3.2. P-space scheme PT

Since in a general curvilinear grid there is no explicit relation between a given point and the
grid cell containing it, in p-space some iterative method has to be used for point location.
In this context global and local search algorithms have to be distinguished. If a point in the
vicinity of the target point has already been located before, the known point can be used
as the starting point for a local search based on popular methods such as stencil walk [4],
the Newton–Raphson iterative method [4], or tetrahedral walk [5]. A global search is usually
necessary to locate the initial position x0 of a particle, whereas a local search can be used
to locate the subsequent particle positions obtained by means of the respective numerical
integration scheme.
In the present investigation a p-space scheme using a tetrahedral walk for local search is

applied. As Kenwright and Lane [5] have shown, this search method is considerably more
e�cient than the Newton–Raphson iterative method. It is based on a tetrahedral decomposition
of the hexahedral grid cells, which is done on-the-�y as the search advances through the grid.
To ensure a consistent decomposition of adjacent grid cells so that there are no gaps between
neighboring tetrahedra and no overlapping regions, the algorithm applied here decomposes a
hexahedron into six tetrahedra. The bene�t of using tetrahedral cells for point location is that
it is easy to test whether a given point lies within a tetrahedron. If the vertices of a regular
tetrahedron are designated by p1, p2, p3, and p4, the di�erence vectors p2 − p1, p3 − p1, and
p4 − p1 are linearly independent, forming a basis of the three-dimensional space. Then any
point x can be written as

x(�1; �2; �3)=p1 + (p2 − p1)�1 + (p3 − p1)�2 + (p4 − p1)�3 (3)
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where �1, �2, and �3 are the coordinates of x with respect to the basis vectors and the origin
p1. They can be calculated analytically by inverting Equation (3). The point x is inside the
tetrahedron if it is surrounded by its four planar faces given by the equations �1=0, �2=0,
�3=0, and �1 + �2 + �3=1, respectively. This is the case if the coordinates of x meet the
following relations:

�1¿0; �2¿0; �3¿0; and 1− �1 − �2 − �3¿0 (4)

If one or more of these conditions are violated, the search proceeds to an adjacent tetrahedron
across the face with the strongest violation. This is repeated until the tetrahedron containing
the point has been found.
For global point location an algorithm is applied which determines a grid node in the vicinity

of the target point x, which is used as a starting point for a local re�nement search based on
a tetrahedral walk. Given a structured grid with Ni, Nj, and Nk grid cells in the three index
directions, the global search starts at the center of the grid at a grid node roughly addressed
by the indices Ni=2, Nj=2, Nk=2, searching with adaptive strides in all index directions for a
grid node next to the target point. In multiblock grids consisting of several interconnected
structured grids (blocks), the global search algorithm has to search every block until the target
point is found. The process is accelerated by checking �rst whether the target point lies within
the bounding box of the current block.
Once a position x is located within the grid, linear interpolation in space and in time is used

to construct the velocity v(x; t) needed by the numerical integration scheme. Given the �ow
solution at discrete time steps tn, n=1; 2; 3; : : : at the vertices of the tetrahedron containing x,
a general linear interpolation operator Lq; n for some �ow �eld quantity q can be de�ned as

q(x; tn) = Lq; n(x)

= q1; n + (q2; n − q1; n)�1 + (q3; n − q1; n)�2 + (q4; n − q1; n)�3 (5)

where qm;n refers to the value of q at the vertex pm at time tn. The interpolation factors
�1, �2, and �3 are the coordinates of x according to Equation (3), and as a by-product of
point location they need not to be calculated separately. Then for t ∈ [tn−1; tn] the velocity
interpolation is given by

v(x; t)=� ·Lv; n(x) + (1− �) ·Lv; n−1(x) (6)

where �=[(t − tn−1)=(tn − tn−1)].

3.3. C-space schemes CG, CZ, and CZ+

The objective of tracing particles in c-space is to make the location of a point within the grid
easier than in p-space. Basically the c-space is a coordinate system in which the curvilinear
physical space grid is orthonormal, so that there is an explicit relation between the coordinates
of some point and the grid cell containing it. As indicated in Figure 1, the transformation of
a given curvilinear p-space grid with grid nodes xi; j; k to an orthonormal c-space grid can be
done by mapping the physical coordinates of the nodes to their index vectors (i; j; k)t . In the
other direction, the entire transformation T of a given c-space point ^=(�1; �2; �3)t to p-space

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:277–299



COMPARISON OF C-SPACE AND P-SPACE PARTICLE TRACING 283
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Figure 1. Transformation of a structured curvilinear p-space grid (left) to an
orthonormal c-space grid (right).

can be de�ned by a trilinear interpolation. Decomposing ^ into an integer part (i; j; k)t and a
fractional o�set (��1;��2;��3)t ,

^=(i; j; k)t + (��1;��2;��3)t ; ��m∈[0; 1[; m∈{1; 2; 3} (7)

the transformation can be written as

x= T (^)

=��3��2��1xi+1; j+1; k+1 +��3��2(1−��1)xi; j+1; k+1
+��3(1−��2)��1xi+1; j; k+1 +��3(1−��2)(1−��1)xi; j; k+1
+ (1−��3)��2��1xi+1; j+1; k + (1−��3)��2(1−��1)xi; j+1; k
+(1−��3)(1−��2)��1xi+1; j; k + (1−��3)(1−��2)(1−��1)xi; j; k (8)

The point location scheme is represented by Equation (7), relating the c-space point ^ to the
index triple (i; j; k)t which addresses the grid cell containing ^. It can be implemented using
integer operators provided by programming languages such as Fortran and C.
Since Equation (8) cannot be inverted analytically, iterative methods have to be applied

to determine the c-space position ^ of an arbitrary p-space point x. It is important to note
that the transformation is not properly (i.e. uniquely) de�ned in irregular grid cells which are
not hexahedra in p-space, e.g. in cells with one or more edges of zero length. Such irregular
cells have to be excluded from the particle tracing domain. However, the same applies to the
computational domain of the �ow solver used here. Therefore, this condition does not lead to
an additional restriction.
By di�erentiating Equation (8) with respect to time it can be found that a p-space velocity

v given at a position x=T (^) is transformed to c-space according to

](^; t)=J−1(^)v(x; t) (9)
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where ] refers to the c-space velocity and J is the Jacobian matrix of T . The mth column of
J is given by

Jm=
@x
@�m

=
@T (^)
@�m

(10)

Here it is assumed that the positions xi; j; k of the grid nodes do not change in time, so that
J is independent of time. It should be noted that for curvilinear p-space grids, J is usually
discontinuous at grid cell faces, so that the c-space velocity ] is discontinuous at cell faces
as well.
Transformation of the initial value problem (Equation (1)) to c-space can be done by

multiplying the di�erential equation from the left with J−1(^), where x=T (^), and choosing
the corresponding initial values. This yields

˙̂(t)= ](^; t); ^(t0)=^0; x0=T (^0) (11)

^0 is determined from the given p-space position x0 by means of an iterative search algorithm
which consists of a global search to �nd a grid node next to x0 and a subsequent local
re�nement based on Newton–Raphson iterations [4].
For the construction of the velocity �eld ](^; t) at arbitrary positions, a trilinear spatial and

linear temporal interpolation is applied. In the following it is assumed that the �ow solution
is provided either at the grid nodes xi; j; k or at the centres of the grid cells. Then the c-space
positions Vi; j; k of the points where the �ow solution is supplied can be written as

Vi; j; k=(i; j; k)t + s (12)

with s=0 (�ow �eld quantities given at the grid nodes) or s=1=2(1; 1; 1)t (quantities given
at the centres of the grid cells), respectively. The points Vi; j; k can be viewed as the nodes of
a second grid which will be referred to as the V-grid in the following. Given the �ow solution
at discrete time steps tn, n=1; 2; 3; : : : ; a general trilinear interpolation operator Tq; n for some
�ow �eld quantity q can be de�ned, so that

q(^; tn)=Tq; n(^′); ^′=^− s (13)

Tq; n is de�ned similarly to the coordinate transformation T in Equation (8), except that the
terms of form xi; j; k are replaced by qi; j; k; n, where the latter is the value of q at the point Vi; j; k
at time tn. Then for t ∈ [tn−1; tn] the velocity interpolation is given by

](^; t)=� ·T]; n(^′) + (1− �) ·T]; n−1(^′) (14)

where �=[(t − tn−1)=(tn − tn−1)]. This requires the c-space velocities ]i;j;k;n to be calculated,
which can be obtained from the p-space velocities vi;j;k;n provided by the �ow solver by
applying Equation (9). Since this has to be done for eight nodes at two time steps, 16
velocity transformations have to be performed.
Trilinear interpolation of the c-space velocity ] is very critical. If in a �rst-order approx-

imation the p-space velocity v is assumed to be linear along the cell edges of the V-grid,
the transformed c-space velocity is only linear if the Jacobian of the transformation is con-
stant along the edges (compare Equation (9)). For s=0 this is the case if the grid cells are
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parallelepipeds, but generally it is not. Therefore, trilinear interpolation of the c-space velocity
as it is used in Equation (14) can lead to considerable interpolation errors. As an alternative,
the p-space velocity v(x; t) at the position x=T (^) can be interpolated by using

v(x; t)=� ·Tv; n(^′) + (1− �) ·Tv; n−1(^′) (15)

The velocity v(x; t) can be transformed to c-space according to Equation (9) by using the
Jacobian J (^) at the query point. Because only one velocity transformation has to be per-
formed instead of 16, this approach leads to a considerably smaller operation count. Moreover,
applying Equation (15) instead of Equation (14) results in signi�cantly smaller errors of the
c-space particle tracing scheme, as will be shown in Section 4.
For the numerical integration of the initial value problem given by Equation (11), the RK

methods described in Section 3.1 are applied accordingly. For example, in Equation (2) the
p-space coordinates x and velocities v have to be replaced by the c-space coordinates ^ and
velocities ], respectively.
In this paper two di�erent coordinate transformations from p-space to c-space are consid-

ered, which are referred to as TG and TZ. Details of these transformations are given in the
next section.

3.3.1. Coordinate transformations TG and TZ. In the present investigation the particle trac-
ing schemes are part of a �nite-volume �ow solver which is based on a colocated arrange-
ment of the variables. In this context two di�erent coordinate transformations from p-space to
c-space have to be considered. Since the �ow solver is operating in c-space, there is a built-in
transformation which is depicted in Figure 2. The �nite-volume method operates on the cells
of the g-grid (solid lines, grid nodes gi; j; k in 3D) and provides the �ow solution at the cen-
ters zi; j; k of the cells. To obtain control volumes which are unit cubes in c-space, the built-
in transformation maps the g-grid to an orthonormal grid. Formally this can be achieved

gi,j

x

x

2

1

z i,j

CV (i,j)

ξ

2

i i+1
j

j+1

ξ

1

Figure 2. Transformation of a curvilinear p-space grid (left, solid lines) to an orthonormal
c-space grid (right), as performed in the �ow solver applied in the present investigation
(2D schematic drawing). The cells of the g-grid (solid lines, grid nodes gi; j) are the con-
trol volumes (CV) on which the �nite-volume �ow solver operates. The �ow solution is
provided at the centers zi; j of the g-grid cells, which constitute the z-grid given by the
thick dashed lines. While the g-grid is orthonormal in this c-space, the z-grid is not.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:277–299



286 F. SCH �AFER AND M. BREUER

by setting xi; j; k=gi; j; k in Equation (8). In the following this transformation is designated by
TG.
Since the velocity is provided at the centres zi; j; k of the control volumes, the z-grid (thick

dashed lines, grid nodes zi; j; k) is more relevant for particle tracing than the g-grid. Unfor-
tunately, the transformation TG does not map the z-grid to an orthonormal grid in c-space,
leading to signi�cant errors when applying trilinear velocity interpolation. To avoid these
problems, a second transformation TZ is considered which maps the z-grid to an orthonormal
grid. This transformation can be obtained by setting xi; j; k=zi; j; k in Equation (8). It is im-
portant to note that s=0 in Equation (12) for TZ, whereas s=1=2(1; 1; 1)t for TG. For both
transformations the c-space point Vi; j; k where the �ow solution is supplied corresponds to the
z-grid node zi; j; k in p-space.
Three di�erent c-space particle tracing schemes (CG;CZ;CZ+) based on the transformations

TG and TZ are described in the following sections. While the scheme CG applies the built-in
transformation TG of the �ow solver, the schemes CZ and CZ+ are based on TZ.

3.3.2. C-space scheme CG. Since the �ow solver is operating in c-space, precomputed trans-
formation matrices J−1 are available for TG. The matrices are supplied at the z-grid nodes,
based on an analytical evaluation of Equation (10) at the corresponding c-space positions
Vi; j; k , e.g.

J1(Vi; j; k) = fi+1 − fi
fi = 1

4 (gi; j+1; k+1 + gi; j; k+1 + gi; j+1; k + gi; j; k)

In order to utilize these precomputed matrices for particle tracing, the scheme CG based on the
transformation TG was investigated. For construction of the velocity �eld an interpolation of
the c-space velocity according to Equation (14) is applied. Since the precomputed matrices are
supplied at the z-grid nodes only, interpolation of the p-space velocity according to Equation
(15) is not used because this requires the transformation matrices J (^) at arbitrary positions
^ within the grid.

3.3.3. C-space scheme CZ. CZ is identical with the ‘C-FDBD’-scheme described in
Reference [4], where it was found to be the most accurate c-space scheme investigated there.
The scheme is based on the transformation TZ, and interpolation of the c-space velocity ac-
cording to Equation (14) is applied for the construction of the velocity �eld. This requires
the transformation matrices to be calculated at the z-grid nodes, which is done on-the-�y
for all eight vertices of the grid cell containing the current query position ^. The matrices
are obtained by evaluating Equation (10) at the c-space positions Vi; j; k corresponding to the
z-grid nodes. It is important to note that the evaluation of Equation (10) at Vi; j; k is ambiguous
since the derivatives may be discontinuous. Right- or left-sided limits of the derivatives are
used depending on the location of the query position ^ with respect to the current grid node.
Decomposing ^ into Vi; j; k (which is identical with (i; j; k)t for TZ) and a fractional o�set
according to Equation (7) leads to forward=backward di�erences such as

J1(Vi; j; k) = zi+1; j; k − zi; j; k
J1(Vi+1; j; k) = zi+1; j; k − zi; j; k
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Table I. Summary of important properties of the investigated particle tracing schemes. The transforma-
tion related entries are relevant only for the c-space schemes and refer to the computational resources
needed for the calculation of the c-space velocity at one query position. The operation count refers to
the number of �oating point operations required to determine the p-space or c-space velocity at one
query position. For the p-space scheme this depends on the number of iterations I (¿1) needed to

perform a local query point location.

Coordinate system p-space c-space

Scheme PT CG CZ CZ+

Point location iterative explicit explicit explicit
Transformation none TG (g-grid) TZ (z-grid) TZ (z-grid)
Transformation none 8, precomputed 8, computed 1, computed
matrices at z-grid nodes at z-grid nodes at query position
Velocity none 16 16 1
transformations
Operation count 60 + I · 70 437 729 309
Construction of interpolation of interpolation of interpolation of interpolation of
velocity �eld p-space velocity c-space velocity c-space velocity p-space velocity

(Equation (6)) (Equation (14)) (Equation (14)) (Equation (15))
Vectorization − + + +
Parallelization (+) + + +

3.3.4. C-space scheme CZ+. The scheme CZ+ is an enhancement of CZ, applying interpo-
lation of the p-space velocity according to Equation (15) for the construction of the velocity
�eld. This requires the transformation matrices to be calculated at arbitrary query positions
within the grid. Evaluating Equation (10) analytically, the �rst column of the Jacobian at
some position ^ is found to be

J1(^) =��3��2(zi+1; j+1; k+1 − zi; j+1; k+1)
+��3(1−��2)(zi+1; j; k+1 − zi; j; k+1)
+ (1−��3)��2(zi+1; j+1; k − zi; j+1; k)
+ (1−��3)(1−��2)(zi+1; j; k − zi; j; k)

where ^ has to be decomposed according to Equation (7).
The scheme CZ+ leads to smaller errors than CZ, since it avoids the trilinear interpolation

of the c-space velocity. Moreover, as shown in Table I, the operation count for CZ+ is
considerably smaller than for CZ and even CG, although the latter makes use of precomputed
Jacobians.

3.4. High-performance computing techniques

The above particle tracing schemes were integrated into the �ow solver FASTEST-3D, which
is to a high degree optimized for usage on vector and parallel-vector computers. Hence the
particle tracing schemes need to be adapted to these platforms as well. Some details of the
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strategies which were applied for the parallelization and vectorization of the particle tracing
schemes are given in the following.

3.4.1. Parallelization. Within FASTEST-3D, block-structured curvilinear grids are used in
order to resolve complex geometries. Parallelization of FASTEST-3D is based on a grid
partitioning approach, i.e. di�erent blocks of the grid can be assigned to di�erent processors.
A distributed memory parallelization is applied, so that processors cannot access the data of
other processors directly. Explicit message passing based on MPI is used to exchange data
between processors whenever necessary.
Within each single block particle tracing takes place in a structured curvilinear grid, and

the overlying block structure has only to be taken into account when particles are moving
from one block to another. To identify the block in which a particle is currently moving,
each particle carries the current block number as an additional attribute besides the particle
position. A domain check is performed at the end of each integration time step to check
whether a particle has passed the interface between two blocks. In this case particles have
to be exchanged between the blocks and, if necessary, between the corresponding processors.
Here the parallel structure of FASTEST-3D can be used to its full extent. When a particle
leaves a block, no search of the destination block has to be performed since it is known
a priori from look-up tables. Furthermore, in the case of the c-space schemes no search of
the particle’s new c-space position is necessary since a well de�ned coordinate transformation
can be applied to obtain the c-space position in the new block from the position in the
previous one. For the p-space scheme at least a grid node in the vicinity of the new particle
position in the neighboring block is known a priori, so that a local tetrahedra-based search is
su�cient for point location. A time-consuming global point location is not necessary.
Owing to the distributed memory parallelization of FASTEST-3D, no load balancing of

particle tracing is possible. Since there is no direct access especially to the grid and the �ow
�eld data of the other processors, each processor can integrate only the traces of the particles
which are currently in one of its own blocks. However, since the computational time for
particle tracing is typically small compared with the entire CPU time of the �ow solver, this
approach is acceptable.

3.4.2. Vectorization. To facilitate vectorization of the particle tracing schemes, the attributes
of the particles such as position and block number are organized in arrays (one array for
each attribute, with the attribute value of the current mth particle as the mth element of the
array). Particle path integration and domain check are done in loops over all particles of a
processor, and the main task is to implement these loops in such a way that there are no data
dependences inhibiting vectorization. This is straightforward for the c-space schemes, which
is mainly due to the vectorizable point location given by Equation (7).
The major problem with the vectorization of the p-space scheme is the iterative point

location which is based on a tetrahedral walk. In an algorithm optimized for scalar computers,
it is reasonable to locate each particle completely before location of the next one is started,
whereas for vector computers it is better to do a single iteration of the point location in a
loop over all particles, and to repeat this loop until all particles are completely located. Before
each iteration a list of the particles which are not yet located is set up or updated, so that the
loop can be restricted to the particles which are not yet �nished (indirect addressing of the
particle arrays). This results in an algorithm which is considerably more sophisticated than in
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the scalar case. Besides an array for the particle list, several additional arrays corresponding
in size to the number of particles are needed for auxiliary purposes. In this way vectorization
of the iterative point location is achieved, although it is less e�cient owing to use of indirect
addressing and considerably more memory resources are required. Additionally, since the
vector and the scalar algorithm are to a high degree adapted to the respective platform, two
di�erent algorithms need to be implemented to obtain a p-space scheme which is optimized
for both scalar and vector computers (compare the performance results in Section 5).

4. INVESTIGATION OF ACCURACY

There are several sources of error in particle tracing, limiting the accuracy of the resulting
particle traces. Common errors of both p-space and c-space particle tracing schemes result
from velocity interpolation, numerical integration of the equation of motion, and �ow solver
accuracy in the case of a numerically calculated velocity �eld. In this investigation a linear
(p-space scheme) or trilinear (c-space schemes) spatial interpolation combined with linear
temporal interpolation is applied, leading to an approximation of second order. Higher-order
interpolation schemes have been proposed [12; 13], especially for the visualization of turbulent
�ows calculated with a spectral simulation code. However, in the present investigation particle
tracing is limited to second-order linear interpolation in time, since it takes place within a
�ow solver which holds only two consecutive time steps of the �ow solution in memory. With
respect to the accuracy impact of the numerical integration scheme, we refer to a discussion
elsewhere [14; 15].
Generally in c-space schemes, the following additional sources of error compared with

p-space schemes can be distinguished.

• Numerical approximation of the transformation matrices.
• Trilinear interpolation of the c-space velocity (see the discussion of Equation (15)).
• Discontinuity of the c-space velocity at cell faces (see the comment on Equation (9)).

Since all three c-space schemes CG, CZ, and CZ+ make use of the exact transformation
matrices based on an analytical evaluation of Equation (10), apart from rounding errors there
are no errors due to numerical approximation of the matrices. Interpolation of the c-space
velocity is only a problem in the schemes CG and CZ, whereas in CZ+ this source of error
is eliminated by applying interpolation of the p-space velocity. However, the discontinuity
of the c-space velocity at cell faces is a remaining problem in all three c-space schemes. In
addition, the c-space scheme CG su�ers from the fact that the g-grid instead of the z-grid (on
which the velocity interpolation takes place) is transformed to an orthonormal c-space grid,
leading to additional interpolation errors on distorted p-space grids.
To verify these predictions derived from theory, the accuracy of the p-space and c-space

particle tracing schemes described in Section 3 was examined extensively on the basis of
simple test cases. The test cases were designed to be close to practical CFD applications in
order to get an estimate of the overall particle tracing accuracy in real application cases. In
particular, no disjoined investigations on the spatial and temporal errors in the limit of very
small time steps and grid cell spacings were carried out.
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In the �rst test case an analytically prescribed velocity �eld was applied in order to monitor
the errors of the numerically calculated particle traces with respect to an analytical solution of
the equation of motion. These investigations were performed for di�erent modes and degrees
of disturbance of an originally cubic grid. Since with respect to practical CFD applications it
is important to investigate the contribution of the �ow solver’s error to the overall error of
the particle traces, a second test case was set up using a numerically calculated velocity �eld.
Such investigations do not allow to split up the resulting error in its components owing to the
temporal integration of the particle paths, the interpolation error in space and time, and the
error of the �ow solver. However, for practical applications this decomposition is of minor
importance. What counts is the measure of the total error.

4.1. Accuracy for analytically prescribed velocity �eld

4.1.1. Test case. Within a cubic grid (edge length 0:2 m, 323 control volumes), a rotational
velocity �eld v(x)=�×x with angular velocity �=(0; 0; 0:025 rad s−1)t was prescribed, so
that an analytical solution of Equation (1) leads to closed circles in the x1-x2-plane as particle
traces. By determining the di�erence �x=xnum−xana between the numerical and the analytical
particle position, the numerical error of the particle tracing schemes was monitored.
The starting point of the calculations was a sampling of up to 2000 particles distributed

randomly over the grid. During particle tracing at each instant in time statistical information
about the numerical error was recorded. In this way a time series of the average numerical
error �� and its estimated standard deviation � was obtained for every space direction. Assuming
that the errors are more or less given by a Gaussian distribution, the errors for the majority
of the particles are within the interval �� ± �. To characterize each time series by a single
number, the maximum of | ��± �| over all time steps was determined, which in the following
is referred to as the ‘absolute error’ of the particle traces.
Several parameter studies were carried out to investigate the di�erent sources of error in

detail. In particular, the following parameters were examined.

• Grid disturbance: As shown in Figure 3, starting from the orthonormal grid two dis-
turbance algorithms were applied to yield curvilinear grids with di�erent degrees of
disturbance. One method uses trigonometric functions to distort the g-grid, resulting in
a smooth disturbance. On the other hand, the second method shifts the grid nodes ran-
domly. Both types of disturbances were chosen in order to obtain curvilinear grids with
properties typically found in practical CFD applications.

Figure 3. Trigonometric (middle) and random (right) disturbance of an originally cubic grid (left). The
largest degree of disturbance used is shown.
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Figure 4. Absolute error of the calculated particle traces for the schemes CG, CZ, and CZ+ (from left
to right) using the integrator RK2 and di�erent degrees of trigonometric grid disturbance. Disturbance
in arbitrary units, where zero refers to the cubic grid. Di�erent error scale in the left diagram. The

curves for zero disturbance are identical for all three diagrams.

• Particle tracing schemes: c-space schemes CG, CZ, CZ+; p-space scheme PT.
• Integration schemes: Runge–Kutta integrators RK2 (modi�ed Euler scheme), RK3.
• Integration time step size: To determine an experimental order of convergence (EOC),
a series with di�erent time step sizes was calculated.

4.1.2. Results. In the following the absolute errors of the particle traces in the x1-direction
are discussed. The results for the x2-direction are very similar. In the x3-direction the error is
in the range of the machine accuracy, since the velocity is zero in this direction.
Figure 4 shows the results for the three c-space schemes applied together with the RK2

integration scheme and a trigonometric grid disturbance. For the cubic grid the particle tracing
errors are dominated by the error of the RK2 scheme (bottom curves in the diagrams), since
the EOC value in the investigated time step range meets almost exactly the theoretical order
of 2. Accordingly, for the integration scheme RK3 an EOC of almost exactly 3 was obtained
on the cubic grid. However, with increasing grid disturbance the errors increase considerably.
This behaviour depends strongly on the c-space scheme applied. By far the largest errors
are found for CG, whereas the errors are considerably smaller for CZ and CZ+. Moreover,
there is a serious convergence problem in the CG scheme, since the errors hardly decrease on
going to smaller time steps. Using the RK3 integration scheme, it has even been observed that
the absolute error of CG is constant in the investigated time step range. A similar problem
occurs in the CZ scheme. Although the overall error is considerably smaller and decreases
more distinctively on going to smaller time steps, it does not tend to zero as soon as some
grid disturbance is present. This convergence problem is eliminated in the CZ+ scheme,
which shows a strong reduction of the error continuing even for the smallest time steps
investigated. The EOC values for CZ+ range from 1.35 to 0.98 for low and high degrees
of grid disturbance, respectively. Additionally, CZ+ shows signi�cantly smaller overall errors
than CZ.
As shown in Figure 5, the results for the random grid disturbance are qualitatively very

similar to those obtained for the trigonometric case. Again CG is the scheme with the largest
errors, whereas CZ+ is by far the most accurate c-space scheme. However, the overall errors
are larger than in the trigonometric case. This is due to the smoothness of the curvilinear
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Figure 5. Absolute error of the calculated particle traces for the schemes CG, CZ, and
CZ+ (from left to right) using the integrator RK2 and di�erent degrees of random grid

disturbance. Di�erent error scale in the left diagram.

grids resulting from the trigonometric disturbance, whereas the random disturbance leads to
stronger discontinuities of the c-space velocity.
Obviously the trilinear interpolation of the c-space velocity used in the CG and CZ schemes

is a major source of error, since the main di�erence between CZ and CZ+ is that the latter
applies interpolation of the p-space velocity. Furthermore, the large errors of CG on distorted
grids are in accordance with the presumption that the transformation of the g-grid instead of
the z-grid to an orthonormal grid leads to considerable interpolation errors.
A remaining problem with the CZ+ scheme is that the velocity �eld in c-space is usually

discontinuous at cell faces, which causes the disturbance-induced error shown in the corre-
sponding diagrams. In order to investigate this issue in more detail, the test case was modi�ed
so that particle tracing takes place in only one large distorted grid cell. No velocity values
from outside the cell were used for particle path integration, thereby avoiding the discontinu-
ity problem. In this case the errors for CZ+ are almost exactly the same as for the p-space
scheme PT, which were found to be independent of the grid disturbance (see below). The
slight di�erence is probably due to the di�erent interpolation schemes used in CZ+ and PT
(trilinear versus linear). Obviously, the disturbance-induced errors in the original test case are
due to the inability of the integration schemes to capture the discontinuity of the velocity �eld.
As a conclusion, a further enhancement of CZ+ could be achieved if it is possible to �nd
an integration scheme which is able to handle the discontinuity better than the Runge–Kutta
schemes used here (e.g. some analytical integration method).
The results for the p-space scheme PT are not shown in Figures 4 and 5, since for any

kind of grid disturbance the errors for PT are almost exactly the same as for the c-space
schemes in the case of a cubic grid (parameter zero in the diagrams). In the investigated time
step range the error in PT is clearly dominated by the integration scheme used. Hence, with
respect to a given velocity �eld the p-space scheme is far more accurate than the investigated
c-space schemes. However, since the velocity �eld was not computed by the �ow solver, the
numerical error of the �ow simulation is not included in the error of the particle traces. Hence
the accuracy of PT and CZ+ for a numerically calculated velocity �eld is discussed in the
next section.
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4.2. Accuracy for numerically computed velocity �eld

4.2.1. Test case. To investigate the contribution of the �ow solver’s error to the overall
error of the particle traces, a lid-driven cavity was considered as a simple test case. The
stationary velocity �eld in a cavity with the same dimensions as in the previous test case
and a lid velocity of 0:0025m s−1 was calculated with FASTEST-3D by using an orthogonal
computational grid with 643 control volumes. The grid is non-equidistant with a stretching
factor of 1.002–1.089 in order to yield a higher density of grid cells next to the walls.
A trigonometric grid disturbance similar to the previous test case was applied to examine
the in�uence of non-orthogonal grids. The resulting rotational velocity �eld is similar to the
rotational velocity �eld used in the previous test case.
Since there is no analytical solution to this three-dimensional �ow problem, no analytical

particle traces can be used to determine the error of the particle tracing schemes. Instead, the
particle tracing error was estimated by using a reference �ow solution on a very �ne orthogonal
grid with 1283 control volumes. Based on this reference solution, reference particle traces
were obtained by applying the p-space scheme PT together with the linear-implicit integrator
LIRK4(3). By determining the di�erence �x=xnum − xref between the numerical particle
position calculated on the coarser grid and the corresponding reference particle position, the
particle tracing error was estimated.
Statistical information about the numerical error of up to 2000 particles was recorded over

the same period of time as in the previous test case. Again, the resulting time series of
the average numerical error and the estimated standard deviation were used to determine the
absolute error of the particle traces (compare Section 4.1.1).
These investigations were performed for the c-space scheme CZ+ and the p-space scheme

PT. Since the c-space schemes CG and CZ are considerably less accurate and less e�-
cient than CZ+, it is not necessary to consider these two schemes here. Both the integration
schemes RK2 (modi�ed Euler scheme) and RK3 were applied to calculate a series of di�erent
integration time steps.

4.2.2. Results. While in the previous test case the errors of the p-space scheme were found
to be independent of the grid disturbance, Figure 6 clearly shows that in the present test
case there is a distinct grid dependence of the particle traces regardless of the particle tracing
scheme in use. Neither the results of the CZ+ and PT schemes nor of the integration schemes
RK2 and RK3 di�er signi�cantly. For the p-space scheme, there are three possible sources
of error contributing to the grid dependence of the particle traces: spatial interpolation of
the velocity �eld, temporal integration of the particle paths, and the grid dependence of the
�ow solution. Since the �ow �elds in the present and in the previous test case are similar,
spatial interpolation and temporal integration errors alone cannot explain the large errors of
the p-space scheme which are more than one order of magnitude larger than in the �rst test
case (see Figure 4, parameter zero in the diagrams). Spatial interpolation errors are even
smaller in the present test case due to the smaller grid spacing. Because temporal integration
errors would show a signi�cant dependence on the integration time step, they do not play
a major role here. The errors especially for the p-space scheme are independent of the time
step. As a consequence, the main reason for the grid dependence of the particle traces is
the grid dependence of the �ow solution. In order to determine the grid dependence of the
�ow �eld, the velocity was monitored at a position in the interior of the �ow region. At this
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Figure 6. Absolute errors of the c-space scheme CZ+ and the p-space scheme PT for a
numerically calculated velocity �eld. Di�erent degrees of trigonometric grid disturbance
(zero corresponds to the orthogonal grid) and the integration schemes RK2 (left) and RK3
(right) were applied. Integration time step in units of a typical simulation time step used

in a time-dependent simulation of this �ow problem with a CFL number of 2.6.

monitoring position, the velocity on the disturbed coarse grid and the reference grid di�ers by
0.66 per cent. For the orthogonal coarse grid the velocity di�erence at the monitoring point
is about 0.37 per cent. Obviously, there is a weak grid dependence of the �ow solution even
in the orthogonal case. Even though such a weak grid dependence (0.37–0.66 per cent) is
typically of minor importance for the overall accuracy of the predicted �ow �eld and therefore
accepted in practical applications, its e�ect on the particle traces seems to be larger than the
di�erence between the PT scheme and the CZ+ scheme.
This test case indicates that in practical applications the grid dependence of the �ow solu-

tion, even if only weakly pronounced, is likely to dominate the overall error of the particle
tracing schemes, especially if a �ow solver of second-order accuracy in space is applied.
Although the p-space scheme PT produces considerably more accurate particle traces than the
c-space scheme CZ+ with respect to a given velocity �eld on a distorted grid, in the case of
a numerically calculated velocity �eld the di�erence between the schemes with respect to the
real particle traces based on the exact solution of the Navier–Stokes equations can become
marginal. This suggests that for practical CFD applications the accuracy of CZ+ is equivalent
to that of the PT scheme and therefore su�cient.
It is important to note that the situation might be di�erent for the calculation of stream-

bands. Streambands can be calculated by solving a di�erential equation for the local rotation
in addition to the particle’s equation of motion [16]. In principle, it is possible to integrate the
equation of motion in c-space and the equation of rotation in p-space, thereby avoiding the
discontinuity of the c-space velocity in the second integration. However, the impact on the
accuracy of streambands calculated with CZ+ compared with PT is an open question. As an
alternative to solving a second di�erential equation, streambands can be constructed by com-
bining two adjacent particle traces with surface elements. In this way only an approximation
of the local rotation is obtained, but also additional information about expansion and shear.
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5. INVESTIGATION OF PERFORMANCE

5.1. Test case

Within a realistic multiblock grid and �ow �eld taken from a practical application (stirred
vessel simulation), more than 105 particles were traced while measuring the time spent for
particle tracing. A multiblock grid was chosen to take the computational resources into account
which are needed to exchange particles between neighboring blocks. To obtain results which
are independent of the parallelization strategy (shared versus distributed memory), these inves-
tigations were performed on one processor only. Since the present implementation is �xed to
a distributed memory parallelization, and since it is well known that the parallel performance
of this method is dominated by the non-controllable load-balancing e�ciency, no attempt is
made to measure parallel e�ciencies. This topic including di�erent parallelization strategies
has been addressed in a variety of other papers, e.g., References [17–19].
The performance measurements were carried out on a scalar computer (Sun Ultra 1 work-

station, 200MHz UltraSparc processor) and a vector computer (Fujitsu VPP300). Partly vec-
torized particle tracing codes more suitable for scalar computers as well as highly vectorized
codes were examined. Both the p-space scheme PT and the c-space scheme CZ+ were con-
sidered. The integration scheme RK2 was applied to calculate a series of di�erent time steps.

5.2. Results

In Figure 7 the average particle tracing time spent for the advection of one particle over one
time step is shown for the vector and the scalar computer. Whereas for CZ+ the particle
tracing time is almost independent of the time step size, for PT it is found to be larger for
larger time steps. This is due to the iterative point location in the p-space scheme. For large
time steps more iterations are necessary to perform a point location of a new particle position
starting from the old one.
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Figure 7. Performance comparison of the CZ+ and PT schemes for a vector (left) and a scalar computer
(right). Both, partly vectorized (pv) and highly vectorized codes (hv) were examined. On the vector
computer the function used for time measurement provided the CPU time and on the scalar computer

the elapsed time. Integration time step in units of the �ow simulation time step.
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The acceleration on the vector computer due to code vectorization is di�erent for the two
schemes. The highly vectorized code of CZ+ was observed to be about three times faster
than the partly vectorized code. For PT the acceleration primarily due to vectorization of the
iterative point location is even larger (3–5-fold), since the partly vectorized code is especially
ine�cient on a vector computer. This is di�erent for CZ+, since its partly vectorized code
already achieves a relatively high e�ciency compared with PT. The vectorization e�ciency
can be seen best when turning o� the vector unit of the VPP300, thereby using only the
scalar unit for the computations. Using the vector unit, the highly vectorized code of CZ+
was found to be about 9–12 times faster than using the scalar unit only, whereas it is only
�ve to six times faster for PT. Obviously, the vectorization e�ciency of PT is considerably
smaller than for CZ+, which is due to the di�culties with the vectorization of the iterative
point location in the p-space scheme (see Section 3.4.2). Furthermore, the comparison between
scalar unit and vector unit shows that vectorization of the code is indispensable in order to
use the considerably faster vector unit instead of the slow scalar unit.
Whereas on the workstation CZ+ is comparable to (slightly faster than) the partly vectorized

code of PT, on the vector computer the highly vectorized code of CZ+ is found to be about
1.3 to more than two times faster than the corresponding code of PT. It is important to
note that the result for PT was only achieved owing to much greater algorithmic e�orts and
additional memory resources required for the vectorization of the iterative point location.
Owing to this algorithmic overhead, on the workstation the highly vectorized code of PT is
signi�cantly slower than the partly vectorized code. Hence two di�erent codes are necessary
to obtain a PT scheme which is optimized for both scalar and vector computers. On the other
hand, in the case of CZ+ there is almost no performance di�erence between the two codes
on the workstation, so that the highly vectorized code can be used for both platforms.

6. APPLICATION

The particle tracing scheme CZ+ was applied for the visualization of di�erent �ow problems
ranging from stirred vessel �ows [2] to direct numerical simulations (DNS) of a turbulent
channel �ow. In the following a DNS application is presented.
At our institute, extensive direct numerical simulations of a turbulent channel �ow are

carried out, which are of great interest for turbulence research. The application discussed here
is based on a computational grid with about seven million control volumes, resulting in more
than 200 MB of solution data at every time step. Owing to the limitation of storage space,
using conventional post-processing methods a temporally highly resolved visualization of this
�ow simulation is practically impossible. Applying the co-visualization approach described in
Section 2, the data were reduced drastically so that a visualization at high temporal resolution
was achieved. In every time step the output of the simulation program was restricted to particle
tracing data instead of the �ow solution. Two hundred particle start positions were speci�ed
at the inlet of the channel, where all 10 time steps new particles were created. In this way
6300 time steps of the simulation were visualized. The complete �ow solution would have
needed about 1:3TB of storage space, whereas only 5:5GB were needed for the particle data.
This corresponds to a data reduction factor of about 240.
Timeline and streakline visualizations of the channel �ow are shown in Figure 8, demons-

trating the high degree of turbulence present in the �ow. Additional resources (images and
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Figure 8. Timeline visualization (top) and streakline visualization (bottom) of the three-dimensional
turbulent �ow in a channel (direct numerical simulation, Re=3300). The particles are started along a

vertical and a horizontal line at the inlet of the channel, respectively.

video sequences) related to this �ow problem can be found at the URL http://www.lstm.
uni-erlangen.de/SFB603 C3/applications/index e.html

7. CONCLUSIONS

One p-space and three c-space particle tracing schemes integrated into a parallel multiblock
�ow simulation program were described. Optimization of the schemes for vector and parallel-
vector computers was an important issue. Comparing all c-space schemes investigated, the
newly developed, improved CZ+ scheme turned out to be considerably more accurate and
more e�cient with respect to the operation count. It combines the integration in c-space with
trilinear interpolation of the p-space velocity, thereby avoiding the errors introduced by the
trilinear interpolation of the c-space velocity.
With respect to an analytically prescribed velocity �eld, the p-space scheme PT was found

to be the most accurate of the schemes applied. However, considering the error introduced
by the �ow solver by using a numerically calculated velocity �eld, the accuracy di�erence
between PT and CZ+ was found to be negligible. The error due to a weak grid dependence
of the �ow solution generally accepted in practical applications dominated the overall error
of the particle traces, indicating that for practical CFD applications based on a second-order
�ow solver the CZ+ scheme is equivalent to PT with respect to accuracy.
Regarding the performance of the particle tracing schemes, on a workstation the CZ+

scheme was found to be comparable to (slightly faster than) the PT scheme, whereas on a
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vector computer CZ+ was up to two times faster. Owing to the iterative point location in the
p-space scheme, the algorithmic e�orts and memory resources required for the vectorization
of PT were considerably higher than for CZ+, leading to a smaller vectorization e�ciency
of PT.
Summarizing these results, with respect to practical CFD applications the c-space scheme

CZ+ was found to be comparable to or—with respect to the performance on vector computers
—better than the p-space scheme PT. An application of CZ+ to an extensive direct numerical
simulation of a turbulent channel �ow was presented.
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